a2 United States Patent

Rajan et al.

US009477928B2

US 9,477,928 B2
Oct. 25, 2016

(10) Patent No.:
45) Date of Patent:

(54) SYSTEM AND METHOD FOR COMPARING
SOFTWARE FRAMEWORKS

(75) Inventors: Sreeranga P. Rajan, Sunnyvale, CA
(US); Indradeep Ghosh, San Jose, CA
(US)

(73) Assignee: Fujitsu Limited, Kawasaki (JP)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 1719 days.

(21) Appl. No.: 12/835,994

(22) Filed: Jul. 14, 2010
(65) Prior Publication Data
US 2012/0017201 Al Jan. 19, 2012
(51) Imt.CL
GO6F 9/44 (2006.01)
GO6N 7/00 (2006.01)
GO6F 11/36 (2006.01)
(52) US. CL
CPCcccue. GO6N 7/00 (2013.01); GO6F 11/3604
(2013.01)
(58) Field of Classification Search
CPC ..o GO6N 7/00; GO6F 11/3608
USPC ... 717/132, 140, 151, 156; 716/113, 118,

716/52, 104, 122; 713/176; 726/1
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,064,819 A * 5/2000 Franssen et al. 717/156
6,078,745 A * 6/2000 De Greef et al. 717/151
7475,000 B2* 1/2009 Cook et al. 703/14
2005/0114850 A1* 5/2005 Chheda et al. ... 717/151
2006/0236310 Al* 10/2006 Domeika et al. 717/140

5/2009 Wassermann et al. 726/1
5/2010 Prasad et al.

2009/0125976 Al*
2010/0125832 Al

OTHER PUBLICATIONS

Chen et al, “ILP-based Scheme for Timing Variation-aware Sched-
uling and Resource Binding”, IEEE 2008, pp. 27-30,<ILP_ Chen08.
pdf>*

Wu et al, “Generic ILP-Based Approaches for Time-Multiplexed
FPGA Partitioning” IEEE 2001, Oct. 1, pp. 1266-1274 <ILP__
Fpga_01.pdf>*

Extended European Search Report; Application No. 11174017.1-
1225; pp. 9, Feb. 6, 2012.

Benhamamouch et al.; “Computing worst case execution time
(WCET) by Symbolically Executing a time-accurate Hardware
Model”; Proceeding of the International MultiConference of Engi-
neers and Computer Scientists 2009, vol. II; pp. 6, Mar. 2009.

(Continued)

Primary Examiner — Tuan Vu
(74) Attorney, Agent, or Firm — Baker Botts L.L.P.

(57) ABSTRACT

In one embodiment, a method may include symbolically
executing application code on a first framework. The method
may also include creating a first model based on the sym-
bolic execution of the first framework. The method may
additionally include symbolically executing the application
code on a second framework. The method may further
include creating a second model based on the symbolic
execution of the first framework. The method may also
include determining one or more parameters associated with
the first framework based on the first model. The method
may additionally include determining one or more param-
eters associated with the second framework based on the
second model. The method may also include selecting one of
the first framework and the second framework as a desired
framework for execution of the application code based on a
comparison of the one or more parameters associated with
the first framework and the one or more parameters associ-
ated with the second framework.

21 Claims, 2 Drawing Sheets

SYMBOLICALLY EXECUTE APPLICATION CODE 20
ON EACH OF A PLURALITY OF FRAMEWORKS

| ~302

¥

BASED ON SYMBOLIC EXECUTIONS, CREATE
MODEL OF EXECUTION OF APPLICATION
CODE 20 FOR EACH FRAMEWORK

~304

!

DETERMINE ONE OR MORE PARAMETERS FOR EACH
FRAMEWORK EXECUTION BASED ON ITS MODEL

™-306

!

DETERMINE A DESIRED FRAMEWORK
BASED ON THE ONE OR MORE

308
PARAMETERS FOR EACH FRAMEWORK

END

US 9,477,928 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Saxena et al.; “A Symbolic Execution Framework for JavaScript”;
2010 IEEE Symposium on Security and Privacy; pp. 513-528.

Peter Velichkov; “Mootools vs JQuery vs Prototype vs YUI vs Dojo
Comparison Revised”; Peter Velichkov’s Blog; http://blog,creonfx.

com/javascript/mootools-vs-jquery-vs-prototype-vs-yui-vs-dojo-
comparison-revised ; pp. 12, Feb. 3, 2009.

Joe Lennon; “Compare JavaScript framework: An overview of the
frameworks that greatly enhance JavaScript development”; IBM;
ibm.com/developerWorks ; pp. 23, Feb. 2, 2010.

European Office Action; Application No. 11174017.1, 7 pages, Sep.
11, 2015.

* cited by examiner

U.S. Patent Oct. 25, 2016 Sheet 1 of 2 US 9,477,928 B2

B
20 22 24
\ \ /
APPLICATION | | COMPARISON | | COMPARISON
CODE 1 TOOLKIT o DATA
FIG. 1
[for (@ b, c) { & IS A SYMBOLIC EXPRESSION
inta, b, c: Xy, ARE SYMBOLIC INTEGERS
c=a+b; — _ — _
if (¢ > 0) { a=xb=yc=2¢={}
c++; !
} ¢={z=x+y}
return c;
< } / \
d0={Z=x+y)&(z>0)} db={z=x+y&@z=<0)}
!
b={z=x+y+1)&z>0)}

FiIG. 2

U.S. Patent

Oct. 25,2016 Sheet 2 of 2

US 9,477,928 B2

SYMBOLICALLY EXECUTE APPLICATION CODE 20
ON EACH OF A PLURALITY OF FRAMEWORKS

| ~302

!

BASED ON SYMBOLIC EXECUTIONS, CREATE
MODEL OF EXECUTION OF APPLICATION
CODE 20 FOR EACH FRAMEWORK

~304

!

DETERMINE ONE OR MORE PARAMETERS FOR EACH
FRAMEWORK EXECUTION BASED ON ITS MODEL

™-306

!

DETERMINE A DESIRED FRAMEWORK
BASED ON THE ONE OR MORE
PARAMETERS FOR EACH FRAMEWORK

™-308

END
FIG. 3
600
I £,
i 4 l
{ | processor 007!
! |
1 |
I 604 |
! «— memory [7 !
I |
I |
!] storage P08 !
] i
1 v]
: 612) Vo :
! INTERFACE ~ [-608 |
I i
: | COMMUNICATION :
. INTERFACE g10 1
| I
I \J I
b e e e e e e o —————— — —— — J

US 9,477,928 B2

1
SYSTEM AND METHOD FOR COMPARING
SOFTWARE FRAMEWORKS

TECHNICAL FIELD

The present disclosure relates generally to testing soft-
ware.

BACKGROUND

In developing Web applications, developers often use
JavaScript. JavaScript is a language standard that is typically
used to enable programmatic access to computational
objects within a host environment. It may be characterized
as a prototype-based object-oriented scripting language that
is dynamic, weakly typed and has first-class functions.
JavaScript is primarily used in the form of client-side
JavaScript, implemented as part of a Web browser in order
to provide enhanced user interfaces and dynamic websites.

In developing JavaScript applications, developers may
choose from multiple JavaScript frameworks. Examples of
JavaScript frameworks are Dojo, Yahoo! User Interface
(YUI), and others. Generally speaking, a framework is an
abstraction in which common code providing generic func-
tionality can be selectively overridden or specialized by user
code providing specific functionality. Frameworks are a
special case of software libraries in that they are reusable
abstractions of code wrapped in a well-defined application
programming interface (API), yet they contain some key
distinguishing features that separate them from normal
libraries. Among these distinguishing features are inversion
of control (e.g., in a framework, unlike in libraries or normal
user applications, the overall program’s flow of control is
not dictated by the caller, but by the framework), default
behavior (e.g., a framework has a default behavior), exten-
sibility (e.g., a framework can be extended by the user
usually by selective overriding or specialized by user code
providing specific functionality, and non-modifiable frame-
work code (e.g., framework code, in general, is not allowed
to be modified; users can extend the framework, but not
modify its code).

Despite the many choices of frameworks, developers are
often not able to determine which of the frameworks may be
more desirable to use (e.g., which framework will execute
faster, the number of inputs required, the number of con-
straints, etc.).

SUMMARY

The present invention provides a method and a system for
comparing software frameworks that substantially elimi-
nates or reduces at least some of the disadvantages and
problems associated with previous methods and systems.

In accordance with a particular embodiment of the present
invention, a method may include symbolically executing
application code on a first framework. The method may also
include creating a first model based on the symbolic execu-
tion of the first framework. The method may additionally
include symbolically executing the application code on a
second framework. The method may further include creating
a second model based on the symbolic execution of the first
framework. The method may also include determining one
or more parameters associated with the first framework
based on the first model. The method may additionally
include determining one or more parameters associated with
the second framework based on the second model. The
method may also include selecting one of the first frame-

10

15

20

25

30

35

40

45

50

55

60

65

2

work and the second framework as a desired framework for
execution of the application code based on a comparison of
the one or more parameters associated with the first frame-
work and the one or more parameters associated with the
second framework.

Technical advantages of particular embodiments of the
present invention include a methodology whereby software
frameworks may be compared.

Other technical advantages will be readily apparent to one
skilled in the art from the following figures, descriptions,
and claims. Moreover, while specific advantages have been
enumerated above, various embodiments may include all,
some or none of the enumerated advantages.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example environment of a compari-
son toolkit, in accordance with the present disclosure;

FIG. 2 illustrates example symbolic execution model
checking, in accordance with the present disclosure;

FIG. 3 illustrates a flow chart of an example method for
comparing software frameworks, in accordance with the
present disclosure; and

FIG. 4 illustrates an example computer system, in accor-
dance with the present disclosure.

DESCRIPTION OF EXAMPLE EMBODIMENTS

FIG. 1 illustrates an example environment 10 of a com-
parison toolkit 22. In particular embodiments, comparison
toolkit 22 facilitates the comparison of frameworks for use
in connection with an application code 20, testing a plurality
of frameworks to produce comparison data 24 which may
include information regarding which of the frameworks may
be more desirable for use by a developer, or may include
information that a developer may review to determine which
framework may be more desirable. Components of example
environment 10 may execute or operate within one or more
computer systems, such as those described in more detail
below with reference to FIG. 4.

Application 20 may include any program of instructions
operable to, when executed by a processor, perform one or
more tasks (e.g., render at least a portion of a Web appli-
cation). In some embodiments, application 20 may be writ-
ten in JavaScript code.

As described above, comparison toolkit 22 may compare
execution of application code 20 on at least two or more
frameworks. In certain embodiments, the frameworks may
include JavaScript frameworks (e.g., Dolo, YUI, etc.). In
these and other embodiments, comparison toolkit 22 may
compare frameworks by applying application code 20 to
each framework using symbolic execution. FIG. 2 illustrates
example symbolic execution. As shown in FIG. 2, each path
in the tree represents a (possibly infinite) set of execution
paths. To check the property if ((a>1)&(b>0))—(c>2) using
symbolic execution as FIG. 2 illustrates, the property may be
negated (the negation being if ((a>1)&(b>0))—(c<2)) and
the negation may be checked at the end of each path of the
symbolic execution. For the execution path ending with
¢={(z=x+y)&(2<0)}, an integer linear programming (ILP)
solver or a solver using another suitable decision procedure
may attempt to find a solution to the following first set of
equations: x>1; y>0; z=x+y; 7=<0; and z<2. For the execution
path ending with ¢={(z=x+y+1)&(z=<0)}, an ILP solver or a
solver using another suitable decision procedure may
attempt to find a solution to the following second set of
equations: x>1; y>0; z=x+y+1; z=0; and z<2. In both sets of

US 9,477,928 B2

3

equations, the first two equations, x>1 and y>0, may be
preconditions and the last equation, z<2, may be a post
condition. If no solution is found for the first or second set
of'equations, the property if ((a>1)&(b>0))—(c>2) is true. If
a solution is found for the first or second set of equations, the
property is false and the solution is a counter example
violating the property.

Based on the symbolic executions of the application code
20 on the plurality of frameworks, comparison toolkit 22
may create a model (e.g., control flow graph, tree, or another
representation) for each framework execution. Comparison
toolkit 22 may, based on each model, determine one or more
parameters for each framework execution. In some embodi-
ments, such parameters may be output by comparison toolkit
22 as comparison data 24. The one or more parameters may
include estimated execution time for the application code 20
using the framework, number of inputs required for the
execution of the application code 20 using the framework,
number of constraints of the execution of the application
code 20 using the framework, or any other suitable param-
eter.

In some embodiments, comparison toolkit 22 may deter-
mine a desired framework to be used for the application code
20 based on the one or more parameters (e.g., comparison
toolkit 22 may select the framework that provides the fastest
execution of application code 20). In certain of these
embodiments, the determination of the desired framework
may be output by comparison toolkit 22 as a portion of
comparison data 24. In other embodiments, a developer of
application code 20 or another person may determine a
desired framework based on analysis of the one or more
parameters.

FIG. 3 illustrates a flow chart of an example method 300
for comparing software frameworks, in accordance with
certain embodiments of the present disclosure. According to
one embodiment, method 300 may begin at step 302. As
noted above, teachings of the present disclosure may be
implemented in a variety of configurations of environment
10. As such, the preferred initialization point for method 300
and the order of the steps 302-308 comprising method 300
may depend on the implementation chosen.

At step 302, comparison toolkit 22 may symbolically
execute application code 20 on each of a plurality of
frameworks.

At step 304, based on the symbolic executions of the
application code 20 on the plurality of frameworks, com-
parison toolkit 22 may create a model (e.g., control flow
graph, tree, or another representation) for each framework
execution.

At step 306, comparison toolkit 22 may, based on each
model, determine one or more parameters for each frame-
work execution.

At step 308, comparison toolkit 22 and/or a developer of
application code 20 may determine a desired framework to
be used for the application code 20 based on the one or more
parameters (e.g., comparison toolkit 22 may select the
framework that provides the fastest execution of application
code 20).

Although FIG. 3 discloses a particular number of steps to
be taken with respect to method 300, method 300 may be
executed with greater or lesser steps than those depicted in
FIG. 3. In addition, although FIG. 3 discloses a certain order
of steps to be taken with respect to method 300, the steps
comprising method 300 may be completed in any suitable
order.

Method 300 may be implemented using environment 10
or any other system operable to implement method 300. In

25

30

40

45

55

65

4

certain embodiments, method 300 may be implemented
partially or fully in software and/or firmware embodied in
computer-readable media.

FIG. 4 illustrates an example computer system 600. In
particular embodiments, one or more computer systems 600
perform one or more steps of one or more methods described
or illustrated herein. In particular embodiments, one or more
computer systems 600 provide functionality described or
illustrated herein. In particular embodiments, software run-
ning on one or more computer systems 600 performs one or
more steps of one or more methods described or illustrated
herein or provides functionality described or illustrated
herein. Particular embodiments include one or more portions
of one or more computer systems 600.

This disclosure contemplates any suitable number of
computer systems 600. This disclosure contemplates com-
puter system 600 taking any suitable physical form. As
example and not by way of limitation, computer system 600
may be an embedded computer system, a system-on-chip
(SOC), a single-board computer system (SBC) (such as, for
example, a computer-on-module (COM) or system-on-mod-
ule (SOM)), a desktop computer system, a laptop or note-
book computer system, an interactive kiosk, a mainframe, a
mesh of computer systems, a mobile telephone, a personal
digital assistant (PDA), a server, or a combination of two or
more of these. Where appropriate, computer system 600
may include one or more computer systems 600; be unitary
or distributed; span multiple locations; span multiple
machines; or reside in a cloud, which may include one or
more cloud components in one or more networks. Where
appropriate, one or more computer systems 600 may per-
form without substantial spatial or temporal limitation one
or more steps of one or more methods described or illus-
trated herein. As an example and not by way of limitation,
one or more computer systems 600 may perform in real time
or in batch mode one or more steps of one or more methods
described or illustrated herein. One or more computer sys-
tems 600 may perform at different times or at different
locations one or more steps of one or more methods
described or illustrated herein, where appropriate.

In particular embodiments, computer system 600 includes
a processor 602, memory 604, storage 606, an input/output
(I/0) interface 608, a communication interface 610, and a
bus 612. Although this disclosure describes and illustrates a
particular computer system having a particular number of
particular components in a particular arrangement, this dis-
closure contemplates any suitable computer system having
any suitable number of any suitable components in any
suitable arrangement.

In particular embodiments, processor 602 includes hard-
ware for executing instructions, such as those making up a
computer program. As an example and not by way of
limitation, to execute instructions, processor 602 may
retrieve (or fetch) the instructions from an internal register,
an internal cache, memory 604, or storage 606; decode and
execute them; and then write one or more results to an
internal register, an internal cache, memory 604, or storage
606. In particular embodiments, processor 602 may include
one or more internal caches for data, instructions, or
addresses. The present disclosure contemplates processor
602 including any suitable number of any suitable internal
caches, where appropriate. As an example and not by way of
limitation, processor 602 may include one or more instruc-
tion caches, one or more data caches, and one or more
translation lookaside buffers (TLBs). Instructions in the
instruction caches may be copies of instructions in memory
604 or storage 606, and the instruction caches may speed up

US 9,477,928 B2

5

retrieval of those instructions by processor 602. Data in the
data caches may be copies of data in memory 604 or storage
606 for instructions executing at processor 602 to operate
on; the results of previous instructions executed at processor
602 for access by subsequent instructions executing at
processor 602 or for writing to memory 604 or storage 606;
or other suitable data. The data caches may speed up read or
write operations by processor 602. The TLBs may speed up
virtual-address translation for processor 602. In particular
embodiments, processor 602 may include one or more
internal registers for data, instructions, or addresses. The
present disclosure contemplates processor 602 including any
suitable number of any suitable internal registers, where
appropriate. Where appropriate, processor 602 may include
one or more arithmetic logic units (ALUs); be a multi-core
processor; or include one or more processors 602. Although
this disclosure describes and illustrates a particular proces-
sor, this disclosure contemplates any suitable processor.

In particular embodiments, memory 604 includes main
memory for storing instructions for processor 602 to execute
or data for processor 602 to operate on. As an example and
not by way of limitation, computer system 600 may load
instructions from storage 606 or another source (such as, for
example, another computer system 600) to memory 604.
Processor 602 may then load the instructions from memory
604 to an internal register or internal cache. To execute the
instructions, processor 602 may retrieve the instructions
from the internal register or internal cache and decode them.
During or after execution of the instructions, processor 602
may write one or more results (which may be intermediate
or final results) to the internal register or internal cache.
Processor 602 may then write one or more of those results
to memory 604. In particular embodiments, processor 602
executes only instructions in one or more internal registers
or internal caches or in memory 604 (as opposed to storage
606 or elsewhere) and operates only on data in one or more
internal registers or internal caches or in memory 604 (as
opposed to storage 606 or elsewhere). One or more memory
buses (which may each include an address bus and a data
bus) may couple processor 602 to memory 604. Bus 612
may include one or more memory buses, as described below.
In particular embodiments, one or more memory manage-
ment units (MMUs) reside between processor 602 and
memory 604 and {facilitate accesses to memory 604
requested by processor 602. In particular embodiments,
memory 604 includes random access memory (RAM). This
RAM may be volatile memory, where appropriate Where
appropriate, this RAM may be dynamic RAM (DRAM) or
static RAM (SRAM). Moreover, where appropriate, this
RAM may be single-ported or multi-ported RAM. The
present disclosure contemplates any suitable RAM. Memory
604 may include one or more memories 604, where appro-
priate. Although this disclosure describes and illustrates
particular memory, this disclosure contemplates any suitable
memory.

In particular embodiments, storage 606 includes mass
storage for data or instructions. As an example and not by
way of limitation, storage 606 may include an HDD, a
floppy disk drive, flash memory, an optical disc, a magneto-
optical disc, magnetic tape, or a Universal Serial Bus (USB)
drive or a combination of two or more of these. Storage 606
may include removable or non-removable (or fixed) media,
where appropriate. Storage 606 may be internal or external
to computer system 600, where appropriate. In particular
embodiments, storage 606 is non-volatile, solid-state
memory. In particular embodiments, storage 606 includes
read-only memory (ROM). Where appropriate, this ROM

10

15

20

25

30

35

40

45

50

55

60

65

6

may be mask-programmed ROM, programmable ROM
(PROM), erasable PROM (EPROM), electrically erasable
PROM (EEPROM), electrically alterable ROM (EAROM),
or flash memory or a combination of two or more of these.
This disclosure contemplates mass storage 606 taking any
suitable physical form. Storage 606 may include one or more
storage control units facilitating communication between
processor 602 and storage 606, where appropriate. Where
appropriate, storage 606 may include one or more storages
606. Although this disclosure describes and illustrates par-
ticular storage, this disclosure contemplates any suitable
storage.

In particular embodiments, /O interface 608 includes
hardware, software, or both providing one or more interfaces
for communication between computer system 600 and one
or more 1/O devices. Computer system 600 may include one
or more of these /O devices, where appropriate. One or
more of these /O devices may enable communication
between a person and computer system 600. As an example
and not by way of limitation, an /O device may include a
keyboard, keypad, microphone, monitor, mouse, printer,
scanner, speaker, still camera, stylus, tablet, touchscreen,
trackball, video camera, another suitable I/O device or a
combination of two or more of these. An /O device may
include one or more sensors. This disclosure contemplates
any suitable [/O devices and any suitable /O interfaces 608
for them. Where appropriate, /O interface 608 may include
one or more device or software drivers enabling processor
602 to drive one or more of these I/O devices. 1/O interface
608 may include one or more I/O interfaces 608, where
appropriate. Although this disclosure describes and illus-
trates a particular 1/O interface, this disclosure contemplates
any suitable 1/O interface.

In particular embodiments, communication interface 610
includes hardware, software, or both providing one or more
interfaces for communication (such as, for example, packet-
based communication) between computer system 600 and
one or more other computer systems 600 or one or more
networks. As an example and not by way of limitation,
communication interface 610 may include a network inter-
face controller (NIC) or network adapter for communicating
with an Ethernet or other wire-based network or a wireless
NIC (WNIC) or wireless adapter for communicating with a
wireless network, such as a WI-FI network. This disclosure
contemplates any suitable network and any suitable com-
munication interface 610 for it. As an example and not by
way of limitation, computer system 600 may communicate
with an ad hoc network, a personal area network (PAN), a
local area network (LAN), a wide area network (WAN), a
metropolitan area network (MAN), or one or more portions
ofthe Internet or a combination of two or more of these. One
or more portions of one or more of these networks may be
wired or wireless. As an example, computer system 600 may
communicate with a wireless PAN (WPAN) (such as, for
example, a BLUETOOTH WPAN), a WI-FI network, a
WI-MAX network, a cellular telephone network (such as,
for example, a Global System for Mobile Communications
(GSM) network), or other suitable wireless network or a
combination of two or more of these. Computer system 600
may include any suitable communication interface 610 for
any of these networks, where appropriate. Communication
interface 610 may include one or more communication
interfaces 610, where appropriate. Although this disclosure
describes and illustrates a particular communication inter-
face, this disclosure contemplates any suitable communica-
tion interface.

US 9,477,928 B2

7

In particular embodiments, bus 612 includes hardware,
software, or both coupling components of computer system
600 to cach other. As an example and not by way of
limitation, bus 612 may include an Accelerated Graphics
Port (AGP) or other graphics bus, an Enhanced Industry
Standard Architecture (EISA) bus, a front-side bus (FSB), a
HYPERTRANSPORT (HT) interconnect, an Industry Stan-
dard Architecture (ISA) bus, an INFINIBAND interconnect,
a low-pin-count (LLPC) bus, a memory bus, a Micro Channel
Architecture (MCA) bus, a Peripheral Component Intercon-
nect (PCI) bus, a PCI-Express (PCI-X) bus, a serial
advanced technology attachment (SATA) bus, a Video Elec-
tronics Standards Association local (VLB) bus, or another
suitable bus or a combination of two or more of these. Bus
612 may include one or more buses 612, where appropriate.
Although this disclosure describes and illustrates a particular
bus, this disclosure contemplates any suitable bus or inter-
connect.

Herein, reference to a computer-readable storage medium
encompasses one or more tangible computer-readable stor-
age media possessing structure. As an example and not by
way of limitation, a computer-readable storage medium may
include a semiconductor-based or other integrated circuit
(IC) (such, as for example, a field-programmable gate array
(FPGA) or an application-specific IC (ASIC)), a hard disk,
an HDD, a hybrid hard drive (HHD), an optical disc, an
optical disc drive (ODD), a magneto-optical disc, a mag-
neto-optical drive, a floppy disk, a floppy disk drive (FDD),
magnetic tape, a holographic storage medium, a solid-state
drive (SSD), a RAM-drive, a SECURE DIGITAL card, a
SECURE DIGITAL drive, or another suitable computer-
readable storage medium or a combination of two or more
of'these, where appropriate. Herein, reference to a computer-
readable storage medium excludes any medium that is not
eligible for patent protection under 35 U.S.C. §101. Herein,
reference to a computer-readable storage medium excludes
transitory forms of signal transmission (such as a propagat-
ing electrical or electromagnetic signal per se) to the extent
that they are not eligible for patent protection under 35
U.S.C. §101.

This disclosure contemplates one or more computer-
readable storage media implementing any suitable storage.
In particular embodiments, a computer-readable storage
medium implements one or more portions of processor 602
(such as, for example, one or more internal registers or
caches), one or more portions of memory 604, one or more
portions of storage 606, or a combination of these, where
appropriate. In particular embodiments, a computer-read-
able storage medium implements RAM or ROM. In particu-
lar embodiments, a computer-readable storage medium
implements volatile or persistent memory. In particular
embodiments, one or more computer-readable storage media
embody software. Herein, reference to software may encom-
pass one or more applications, bytecode, one or more
computer programs, one or more executables, one or more
instructions, logic, machine code, one or more scripts, or
source code, and vice versa, where appropriate. In particular
embodiments, software includes one or more application
programming interfaces (APIs). This disclosure contem-
plates any suitable software written or otherwise expressed
in any suitable programming language or combination of
programming languages. In particular embodiments, soft-
ware is expressed as source code or object code. In particular
embodiments, software is expressed in a higher-level pro-
gramming language, such as, for example, C, Perl, or a
suitable extension thereof. In particular embodiments, soft-
ware is expressed in a lower-level programming language,

35

40

45

50

55

60

o
o

8

such as assembly language (or machine code). In particular
embodiments, software is expressed in JAVA. In particular
embodiments, software is expressed in Hyper Text Markup
Language (HTML), Extensible Markup Language (XML),
or other suitable markup language.

A component of example environment 10 may include
logic and/or other suitable element. Logic performs the
operations of the component, for example, executes instruc-
tions to generate output from input. Logic may include
hardware, software, and/or other logic. Logic may be
encoded in one or more tangible computer readable storage
media and may perform operations when executed by a
computer. Certain logic, such as a processor, may manage
the operation of a component. Examples of a processor
include one or more computers, one or more microproces-
sors, one or more applications, and/or other logic.

Although the present invention has been described in
detail with specific components being identified, various
changes and modifications may be suggested to one skilled
in the art and, further, it is intended that the present invention
encompass any such changes and modifications as clearly
falling within the scope of the appended claims.

Note also that, with respect to specific process flows
disclosed, any steps discussed within the flows may be
modified, augmented, or omitted without departing from the
scope of the invention. Additionally, steps may be performed
in any suitable order, or concurrently, without departing
from the scope of the invention.

Numerous other changes, substitutions, variations, altera-
tions, and modifications may be ascertained to one skilled in
the art and it is intended that the present invention encom-
pass all such changes, substitutions, variations, alterations,
and modifications as falling within the scope of the
appended claims.

We claim:

1. A method, implemented with a processor and storage
device having instructions stored thereon, wherein the
instructions when executed by the processor, cause the
processor to perform the method steps, comprising:

symbolically executing application code on a first frame-

work, a framework comprising an abstraction in which
common code providing generic functionality can be
specialized by user code providing specific functional-
ity;

creating a first model based on the symbolic execution of

the first framework;

symbolically executing the application code on a second

framework;

creating a second model based on the symbolic execution

of the second framework;

based on the first model, determining one or more param-

eters associated with the first framework;
based on the second model, determining one or more
parameters associated with the second framework; and

based on a comparison of the one or more parameters
associated with the first framework and the one or more
parameters associated with the second framework,
selecting one of the first framework and the second
framework as a desired framework for execution of the
application code.

2. A method according to claim 1, wherein the application
code is written in JavaScript.

3. A method according to claim 1, wherein at least one of
the first framework and the second framework is a
JavaScript framework.

4. A method according to claim 1, wherein at least one of
the first model and the second model is a control flow graph.

US 9,477,928 B2

9

5. A method according to claim 1, wherein at least one of
the one or more parameters associated with the first frame-
work and the one or more parameters associated with the
second framework is an execution time of the application
code when the application code is applied to the respective
framework.

6. A method according to claim 1, wherein at least one of
the one or more parameters associated with the first frame-
work and the one or more parameters associated with the
second framework is a number of inputs required for execu-
tion of the application code when the application code is
applied to the respective framework.

7. A method according to claim 1, wherein at least one of
the one or more parameters associated with the first frame-
work and the one or more parameters associated with the
second framework is a number of constraints present in
execution of the application code when the application code
is applied to the respective framework.

8. One or more computer-readable tangible storage media
encoding software that is operable when executed to:

symbolically execute application code on a first frame-

work, a framework comprising an abstraction in which
common code providing generic functionality can be
specialized by user code providing specific functional-
ity;

create a first model based on the symbolic execution of the

first framework;

symbolically execute the application code on a second

framework;

create a second model based on the symbolic execution of

the second framework;

based on the first model, determine one or more param-

eters associated with the first framework;
based on the second model, determine one or more
parameters associated with the second framework; and

based on a comparison of the one or more parameters
associated with the first framework and the one or more
parameters associated with the second framework,
select one of the first framework and the second frame-
work as a desired framework for execution of the
application code.

9. Media according to claim 8, wherein the application
code is written in JavaScript.

10. Media according to claim 8, wherein at least one of the
first framework and the second framework is a JavaScript
framework.

11. Media according to claim 8, wherein at least one of the
first model and the second model is a control flow graph.

12. Media according to claim 8, wherein at least one of the
one or more parameters associated with the first framework
and the one or more parameters associated with the second
framework is an execution time of the application code
when the application code is applied to the respective
framework.

13. Media according to claim 8, wherein at least one of the
one or more parameters associated with the first framework
and the one or more parameters associated with the second
framework is a number of inputs required for execution of
the application code when the application code is applied to
the respective framework.

40

45

55

10

14. Media according to claim 8, wherein at least one of the
one or more parameters associated with the first framework
and the one or more parameters associated with the second
framework is a number of constraints present in execution of
the application code when the application code is applied to
the respective framework.

15. A non-transitory computer-readable medium compris-
ing logic configured to be executed by a computer, the logic
comprising:

logic for symbolically executing application code on a

first framework, a framework comprising an abstrac-
tion in which common code providing generic func-
tionality can be specialized by user code providing
specific functionality;

logic for creating a first model based on the symbolic

execution of the first framework;

logic for symbolically executing the application code on

a second framework;

logic for creating a second model based on the symbolic

execution of the second framework;
logic for determining one or more parameters associated
with the first framework based on the first model;

logic for determining one or more parameters associated
with the second framework based on the second model;
and

logic for selecting one of the first framework and the

second framework as a desired framework for execu-
tion of the application code based on a comparison of
the one or more parameters associated with the first
framework and the one or more parameters associated
with the second framework.

16. A non-transitory computer-readable medium accord-
ing to claim 15, wherein the application code is written in
JavaScript.

17. A non-transitory computer-readable medium accord-
ing to claim 15, wherein at least one of the first framework
and the second framework is a JavaScript framework.

18. A non-transitory computer-readable medium accord-
ing to claim 15, wherein at least one of the first model and
the second model is a control flow graph.

19. A non-transitory computer-readable medium accord-
ing to claim 15, wherein at least one of the one or more
parameters associated with the first framework and the one
or more parameters associated with the second framework is
an execution time of the application code when the appli-
cation code is applied to the respective framework.

20. A non-transitory computer-readable medium accord-
ing to claim 15, wherein at least one of the one or more
parameters associated with the first framework and the one
or more parameters associated with the second framework is
a number of inputs required for execution of the application
code when the application code is applied to the respective
framework.

21. A non-transitory computer-readable medium accord-
ing to claim 15, wherein at least one of the one or more
parameters associated with the first framework and the one
or more parameters associated with the second framework is
a number of constraints present in execution of the appli-
cation code when the application code is applied to the
respective framework.

#* #* #* #* #*

